Sparse Direct Factorizations through Unassembled Hyper-Matrices
نویسندگان
چکیده
We present a novel strategy for sparse direct factorizations that is geared towards the matrices that arise from hp-adaptive Finite Element Methods. In that context, a sequence of linear systems derived by successive local refinement of the problem domain needs to be solved. Thus, there is an opportunity for a factorization strategy that proceeds by updating (and possibly downdating) the factorization. Our scheme stores the matrix as unassembled element matrices, hierarchically ordered to mirror the refinement history of the domain. The factorization of such an ‘unassembled hyper-matrix’ proceeds in terms of element matrices, only assembling nodes when they need to be eliminated. The main benefits are efficiency from the fact that only updates to the factorization are made, high scalar efficiency since the factorization process uses dense matrices throughout, and a workflow that integrates naturally with the application. We present tests on 2D problems that bear out the large savings possible with hyper-matrix factorizations.
منابع مشابه
Sparse Direct Factorizations through Unassembled Hyper-Matrices submitted to Computer Methods in Applied Mechanics and Engineering
We present a novel strategy for sparse direct factorizations that is geared towards the matrices that arise from hp-adaptive Finite Element Methods. In that context, a sequence of linear systems derived by successive local refinement of the problem domain needs to be solved. Thus, there is an opportunity for a factorization strategy that proceeds by updating (and possibly downdating) the factor...
متن کاملRandomized Sparse Direct Solvers
We propose randomized direct solvers for large sparse linear systems, which integrate randomization into rank structured multifrontal methods. The use of randomization highly simplifies various essential steps in structured solutions, where fast operations on skinny matrix-vector products replace traditional complex ones on dense or structured matrices. The new methods thus significantly enhanc...
متن کاملFinding Exact and Approximate Block Structures for ILU Preconditioning
Sparse matrices which arise in many applications often possess a block structure which can be exploited in iterative and direct solution methods. These block-matrices have as their entries small dense blocks with constant or variable dimensions. Block versions of incomplete LU factorizations which have been developed to take advantage of such structures give rise to a class of preconditioners t...
متن کاملMulti-layer Hierarchical Structures and Factorizations
We propose multi-layer hierarchically semiseparable (MHS) structures for the fast factorizations of dense matrices arising from multi-dimensional discretized problems such as certain integral operators. The MHS framework extends hierarchically semiseparable (HSS) forms (which are essentially one dimensional) to higher dimensions via the integration of multiple layers of structures, i.e., struct...
متن کاملsymPACK: a solver for sparse Symmetric Matrices
Systems of linear equations arise at the heart of many scientific and engineering applications. Many of these linear systems are sparse; i.e., most of the elements in the coefficient matrix are zero. Direct methods based on matrix factorizations are sometimes needed to ensure accurate solutions. For example, accurate solution of sparse linear systems is needed in shift-invert Lanczos to compute...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007